/content/honeywellbt/us/en/search.html
    title
    subtitle

    Honeywell Collaborates With The University Of Texas At Austin For Innovative Carbon Capture And Storage Technology

    • Honeywell establishes licensing agreement with Texas Carbon Management Program Group at The University of Texas at Austin
    • New Advanced Solvent technology will capture carbon dioxide generated from combustion flue gases from power, steel, cement and other industrial plants

    DES PLAINES, Ill., Dec. 15, 2021 /PRNewswire/ -- Honeywell (Nasdaq: HON) announced today an agreement with The University of Texas at Austin that will enable the lower-cost capture of carbon dioxide emissions from power plants and heavy industry1.

    Honeywell will leverage UT Austin's proprietary advanced solvent technology to create a new offering targeted at power, steel, cement and other industrial plants to lower emissions generated from combustion flue gases in new or existing units. The solution provides these sectors with an additional tool to help meet regulatory requirements and sustainability goals.

    Honeywell has committed to achieve carbon neutrality in its operations and facilities by 2035. This new carbon capture technology builds on the company's track record of sharply reducing the greenhouse gas intensity of its operations and facilities as well as its decades-long history of innovation to help its customers meet their environmental and social goals. About half of Honeywell's new product introduction research and development investment is directed toward products that improve environmental and social outcomes for customers.

    The licensing arrangement with UT Austin expands Honeywell's leading carbon capture technology portfolio. Today, 15 million tons per year of CO2 is being captured and used in storage/utilization applications through Honeywell's CO2 Solutions process expertise. Honeywell currently has the capacity to capture 40 million tons per year through its installed projects worldwide2.

    UT Austin's patented solution utilizes an advanced solvent, which enables carbon dioxide to be captured at a lower cost through greater efficiency using smaller equipment, creating viable project economics today under current CO2 policy frameworks in North America and Europe. 1,3 For a typical power plant (650 MW capacity), applying advanced solvent carbon-capture technology would enable the capture of about 3.4 million tons of CO2 annually, equivalent to removing nearly 735,000 cars from the road each year.4   

    This point source CO2 removal technology can be retrofitted within existing plants or included as part of a new installation. In this process, carbon dioxide is absorbed into an amine solvent and then sent to a stripper where CO2 is separated from the solvent. This CO2 is then compressed for geological sequestration or used for other purposes. With thousands of power and industrial plants around the world, the opportunity for significant emissions reduction is enormous.  

    "As the world proactively seeks technology solutions that limit greenhouse gas emissions, we recognize that carbon capture technology is an important lever available today to reduce emissions in carbon-intensive industries that have few alternative options, such as steel plants and fossil fuel power plants," said Ben Owens, vice president and general manager, Honeywell Sustainable Technology Solutions. "By working with UT Austin, our advanced solvent carbon capture system will enable lower cost of CO2 captured post-combustion.1

    "UT Austin is a leader in carbon capture research, focusing in this area for more than 20 years through its Texas Carbon Management Program (TxCMP). Gary Rochelle, professor at the McKetta Department of Chemical Engineering and leader of TxCMP at UT Austin, and his team have established an efficient, second-generation amine scrubbing system through years of research and analysis. The improved performance from this solution can unlock project economics for "hard to abate" industries such as steel, cement, and chemical plants, and coal, natural gas and bio-energy power plants.      

    "We are thrilled that our decades of research has led to carbon capture technology that can significantly reduce carbon emissions.5 The licensing agreement with Honeywell enables us to commercially scale this in ways that can make major contributions toward zero emissions efforts to address global warming and to reduce pollutants in surrounding communities," Rochelle said.  

    In 2020, carbon capture, utilization and storage (CCUS) projects worldwide were capturing and storing/using 40 million metric tons per year of carbon dioxide, according to the International Energy Agency (IEA).6 In order to align with the IEA Sustainable Development Scenario (SDS), which demonstrates a pathway to limit global temperature rise by less than 1.65º C, CCUS project capacity must increase more than 20 times to enable capture of 840 million metric tons per year of CO2 by 2030.7

    Honeywell (www.honeywell.com/us/en) is a Fortune 100 technology company that delivers industry-specific solutions that include aerospace products and services; control technologies for buildings and industry; and performance materials globally. Our technologies help aircraft, buildings, manufacturing plants, supply chains, and workers become more connected to make our world smarter, safer, and more sustainable. For more news and information on Honeywell, please visit www.honeywell.com/us/en/news.

    The University of Texas at Austin collaborates with a diverse array of partners — including entrepreneurs, investors, technology incubators, and large enterprises — to bring campus innovations to the market to improve lives. UT Austin research generates more than 150 new technologies each year, providing abundant and varied opportunities for industry collaboration. Read the latest research news or learn more about technologies available for partnering.

    Editor's Note: As part of the licensing arrangement, Professor Rochelle provides consulting services to Honeywell.

    This release contains certain statements that may be deemed "forward-looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934. All statements, other than statements of historical fact, that address activities, events or developments that we or our management intends, expects, projects, believes or anticipates will or may occur in the future are forward-looking statements. Such statements are based upon certain assumptions and assessments made by our management in light of their experience and their perception of historical trends, current economic and industry conditions, expected future developments and other factors they believe to be appropriate. The forward-looking statements included in this release are also subject to a number of material risks and uncertainties, including but not limited to economic, competitive, governmental, and technological factors affecting our operations, markets, products, services and prices. Such forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ from those envisaged by such forward-looking statements. We identify the principal risks and uncertainties that affect our performance in our Form 10-K and other filings with the Securities and Exchange Commission.

    Notes:

    1. Lower cost of CO2 capture based on comparing estimated capital and operating costs of this solution against other conventional amine solvents in same applications. CO2 pricing considers current policies of $50/ton tax credit (USA per IRS Section 45Q for permanent storage) and $60/ton (UK and Europe – approximate averages from August 2021 thru country/regional Emission Trading Systems and as reported by IHS Markit).
    2. Includes capacity of deployed Honeywell technology (membranes and chemical & physical solvents) in installed projects enabling CO2 capture from gas streams, of which 15 million tonnes of the captured CO2 is being utilized for enhanced oil recovery annually.
    3. Internally developed information based on pilot-scale test campaigns at UT-Austin pilot plant and National Carbon Capture Center using flue gas from both coal and natural gas combined cycle sources and capturing 90% of CO2.
    4. Emissions reductions consider a 650 MW coal power plant with 85% annual operating rate with flue gas carbon capture, achieving overall 90% CO2 emission capture from the retrofitted unit.  CO2 emission equivalency based on EPA conversion factors (https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator).
    5. "Significant reductions" refers to 90% overall CO2 capture, as demonstrated in pilot-scale test campaigns at UT-Austin pilot plant and National Carbon Capture Center using flue gas from both coal and natural gas combined cycle sources.  CCUS power plants operating today capture around 90% of the CO2 from flue gas (https://www.iea.org/reports/ccus-in-power).
    6. IEA CCUS Technology Report – April 2021 (https://www.iea.org/reports/about-ccus).
    7. IEA Report Extract: CCUS in the transition to net-zero emissions (https://www.iea.org/reports/ccus-in-clean-energy-transitions/ccus-in-the-transition-to-net-zero-emissions).
    Tehani Manochio
    Sean Meakim